等温滴定量热仪ITC在生物分子
与纳米颗粒相互作用研究中的应用
本文由马尔文帕纳科医药行业业务发展专家范洋晶供稿
随着纳米技术的飞速发展,各种具有新颖功能的纳米颗粒(Nanoparticles,NPs)已经在多个领域展现出广泛的应用前景。纳米颗粒与生物分子之间的相互作用是应用和了解其作用机制的基础,特别是纳米颗粒与蛋白质的相互作用是当前研究的重点,但是大多数分析方法都未能阐明其背后的形成机制。因此,洞悉纳米颗粒与蛋白质的相互作用是一项具有挑战性的任务。
等温滴定量热法(Isothermal Titration Calorimetry, ITC)通过直接测量生物分子反应过程中吸收或放出的热量,为研究各种各样的生物分子相互作用提供了全面的信息。
MicroCal PEAQ-ITC 微量热仪具有样品量消耗少、灵敏度高、广泛的亲和力测量范围和可选择的高通量等优势,通过一次实验即可获取结合相关的亲和力 (KD)、化学结合计量比 (N)、焓变 (ΔH) 和熵变 (ΔS)等一整套热力学信息。
ITC 不仅是药物发现、蛋白质相互作用研究和调控的重要工具,也为深入了解蛋白质-纳米颗粒相互作用的机制奠定基础。
应 用 案 例
等温滴定量热法(ITC)
蛋白质可以吸附在大多数的纳米颗粒上,这些相互作用大部分是放热的,也有些是吸热的。大多数蛋白质-纳米颗粒相互作用的结果可以用 One set of sites 模型来拟合,各个蛋白位点和纳米颗粒的结合具有相似的亲和力。研究发现也存在适合 Two set of sites 模型的蛋白质-纳米颗粒相互作用。图1展示的细胞色素C 吸附在氨基酸包被的纳米颗粒上发生了两个结合事件,这可能是由于蛋白质构型的改变和由于更多蛋白质吸附到纳米颗粒上导致的蛋白质间相互作用。

图1:细胞色素C(CytC)吸附在氯基酸包被的纳米颗粒(NPs)上的滴定曲线
有时也会出现传统的单套或多套位点模型无法拟合的热力学图谱,图2为 BSA 结合硫醇包被的金纳米颗粒的滴定曲线。这种结合可能是由于纳米颗粒和蛋白质的表面异质性造成的,因为一个纳米颗粒可以提供不同性质的位点供蛋白质结合,而一个蛋白质也可以使用不同的基团与纳米颗粒表面结合。

图2:BSA结合到硫醇包被的金纳米颗粒(AuNPs)的滴定曲线
尽管蛋白质-纳米颗粒存在不同的相互作用类型,但焓熵补偿关系仍然成立。ΔH--TΔS线性图的斜率和截距被认为是复合物形成时构象变化和去溶剂化的定量衡量。

图3:NP-蛋白质相互作用研究中的 TΔS –ΔH线性图,使用一系列大小、表面功能差异较大的NPs
ITC也可用于识别相互作用过程中可能的蛋白质聚集或变性。例如,BSA在带正电荷的金纳米颗粒上的吸附表现出两个结合事件,第一步结合的TΔS为-200 kJ mol−1,而第二步结合的TΔS 为-1000 kJ mol−1,这种异常的大熵变被认为是由蛋白聚集所导致的。

图4:BSA结合到带正电荷的NP的滴定曲线
结论
Conclusion
生物分子-纳米颗粒相互作用的热力学研究是非常重要的,在很大程度上会影响后续的生物效应。例如,吸附蛋白的结合部分和结合强度可能决定其结构和功能的完整性。尽管许多分析技术可以用来描述蛋白质- 纳米颗粒相互作用,但很少有技术能提供像 ITC 一样多的定量信息。
等温滴定量热法是非标记和非破坏性的,通过提供一整套完整的热力学信息研究蛋白质对纳米材料的吸附,可作为一种补充技术帮助我们更好地理解蛋白质-纳米颗粒的相互作用机制。
参考文献
[1] Huang RX, Lau BLT. Biomolecule–nanoparticle interactions: Elucidation of the thermodynamics by isothermal titration calorimetry. Biochim Biophys Acta. 2016; 1860(5): 945-956.
[2] Prozeller D, Morsbach S, Landfester K. Isothermal titration calorimetry as a complementary method for investigating nanoparticle-protein interactions. Nanoscale. 2019; 11(41): 19265-19273.
相关产品

PEAQ-ITC 等温滴定微量热仪
MicroCal PEAQ-ITC系统直接测定分子结合过程中吸收或者放出的热量。通过非标记的方法,在一次实验中直接测定亲和力和全套热力学参数,为研究各类生物分子(及部分非生物分子)间的相互作用提供全面而深入的信息:亲和力(KA或KD)、化学计量比(n)、焓变(ΔH)及熵变(ΔS)等。该仪器能给出分子相互作用的完整热力学曲线。不仅能够定量的给出结合强弱,还能够透过热力学数据发掘分子相互作用的机理。
关注马尔文帕纳科微信公众号,获取产品手册
联系我们:
马尔文帕纳科中国
电话: 销售: +86 400 630 6902
电话: 售后: +86 400 820 6902
4907

- 1折叠屏、6G、新能源汽车,MIM/CIM工艺如何借势起飞?
- 2一键提速!OMEC激光粒度仪全新QC测控界面让质检效率翻倍不是梦!
- 3这样调整粉末粒度,粉末冶金制品性能逆天改命!
- 4上海依肯产品册
- 5Nanoe粉体手册
- 6自动吸枪产品手册
- 7分级磨产品手册
- 8钉盘磨产品手册

- 为什么近期LDH的电催化应用频登顶刊?
- 纳米材料与类器官:从相互作用到个性化医疗的突破
- AFM、AHM等顶刊报道黑磷的最新研究进展
- 为什么中药碳点的研究进展值得关注?
- 高纯拟薄水铝石:开启材料科学新纪元的璀璨明珠
- 我司首席科学家程金生博士获得荷兰国际学术机构颁发的评审专家证书
- 为什么近期MOF材料的研究进展值得关注?
- 致密化压力对石榴石固态锂电池成型和性能的影响
- 苏州碳丰科技首席科学家程金生老师以本公司名义在国际上发表关于石墨烯纤维的论文《石墨烯纤维纳米复合材料的合成及氨基酸检测的分析应用》:
- 介可视·散装物料库存管理雷达全景扫描系统在料仓、堆场中的应用
- 磷酸化修饰鬼臼果多糖的制备及生物活性
- DSR论文解读:Advanced Science News 报道中科院长春应化所新型非铂催化材料研究成果
- High-throughput preparation, scale up and solidification of andrographolide nanosuspension using hummer acoustic resonance technology(纳米混悬剂制备的前瞻性技术 - 蜂鸟声共振)
- 扫描电镜优秀论文赏析|飞纳台式扫描电镜电极材料上的应用
- 扫描电镜论文赏析-干旱影响杨树叶片及次生木质部发育的分子机制
- 压实度与密实度的区别
