近些年,国家对能源问题、环保问题的关注日益提升,国家出台碳中和相关政策,努力争取2060年前实现碳中和,新能源及其相关行业也随之发展迅猛。其中,非常具有代表性的新能源车以其无污染、节能、经济等特点,强势走进了人们的视线,并在国家政策的大力推动下愈发火爆。随着对新能源车的需求不断增加,对高性能锂离子电池的需求也不断增大,锂离子电池的研发和生产单位如雨后春笋般大量涌现。
锂离子电池有四大关键材料:正极、负极、隔膜和电解液。其充放电原理如下图所示。
其中,正极材料是决定锂离子电池性能和成本的重要因素,也是制约电池容量进一步提高的关键因素;是电池能量密度提高的关键技术突破方向。从磷酸铁锂(LFP)、三元到高镍三元,电池能量密度不断提升。处于对材料能量密度、循环寿命、成本以及安全性的考虑,目前,最热门的正极材料主要是磷酸铁锂(LFP)和镍钴锰酸锂(NCM)三元电池材料。
对锂离子电池正极材料研发和生产过程中的性能表征,是确保锂离子电池最终性能必不可少的重要过程。材料的密度测试,正是需要考察的一个重要指标。对于研发人员来说,提高正极材料的真实密度,意味着可以提高锂离子电池的能量密度,提高电池的性能;而在生产过程中,保证正极材料真密度指标稳定,是确保锂离子电池产品稳定的重要操作。
本文中,我们使用了 Micromeritics 的 AccuPyc 系列真密度检测仪,对镍钴锰酸锂(NCM)三元电池材料的密度进行了表征检测。AccuPyc系列仪器采用气体置换法原理,利用 He 作为气体介质,获得材料的实际体积数据,并根据测试样品的质量,计算出材料的真实密度。气体测密度法是世界公认的测骨架体积和密度的最可靠技术之一,该技术采用气体置换法测试出体积,所用气体为惰性气体,如氦气或氮气,所以能够达到无损检测的状态。并且,由于气体分子比较小,所以测得的真密度比传统的阿基米德浸液法更准确,重复性更高。
下图是仪器的工作原理图,样品在样品仓中形成密封环境,打开 1 阀,气体进入样品仓,达到一定压力后,阀门关闭,待样品与气体达到平衡后,压力传感器读取此时压力 P1 。之后 2 阀打开,气体则会从样品仓扩散进入扩展仓,待两个仓内的气体和样品达到平衡后,压力传感器读取此时压力 P2 。之后基于理想气体状态方程 PV=nRT,换算出材料的真实体积 V ,带入 p=m/V,计算出材料的真实密度。
实验步骤
清洁样品池。先用水清洗,用柔软的纱布或纸巾擦拭,亦可用乙醇进行冲洗,常温晾干或 90℃ 烘干。
AccuPyc 系列仪器开机。测试前,先打开 AccuPyc 主机及操作软件进行主机预热,预热时间至少 30 分钟。
称量。先把 10 cc 的样品杯置于万分之一天平上,读数稳定后,去皮。将样品杯拿出装入样品,样品体积大概占据样品杯体积 80%-90%。再次进行称量,获取样品实际质量,并记录下来。之后把样品杯放入到仪器样品仓中。
设定测试条件。设定测试条件中最重要的参数是质量、压力和测试次数。质量决定了测试结果的准确性,一定要输入正确的质量。压力确定了结果的正确性,需要采用跟参考文件/标准/参考文献相同的压力,才能获得具有可比性的数据。测试次数决定着测试时间,测试次数越多,测试时间越长。本实验采用的测试条件为:测试压力 P=19.5psi;吹扫次数10次;测试次数10次。
运行测试。
报告数据。
测试结果及分析
经过测试,我们得到了如下结果:
NCM 的体积平均值为 3.3577 g/cm³,标准偏差为 0.0010 g/cm³;密度平均值为 4.5769 g/cm³,标准偏差为 0.0014 g/cm³。
通过密度和体积表格可查看每一次循环测试的结果。
从上面的表格中可以看出,材料的真实体积都在3.35cm³ 范围内,仅在小数点后第三位出现浮动,计算得出的密度约为 4.57 g/cm³,同样仅在小数点后第三位出现浮动。这个变化可以说非常小了。
接下来我们以体积对循环次数做图,并以平均体积做标准线,可以得到下图所示的结果。图中红色的圆点是十次的体积测试值,中间红色的水平线为体积平均值。通过这个图不难看出,十次测试的体积结果是围绕着体积平均值波动,非常稳定,并未出现持续走低等异常现象。该图中的绿色曲线是仪器内部的温度变化曲线。从图中可以看出,整个测试过程中,仪器内部温度仅由26.76℃增加到26.98℃,过程中所到达的最高温度是27℃。整个测试过程中,最大温度浮动不超过 0.3℃。并且在温度浮动到27℃时,仪器自动散热,将温度稳定下来。
用质量除以体积,即可得到密度。于是,可使用密度对循环次数做图。从图中可以发现,密度曲线的趋势与体积曲线相符,仅显示出 180° 翻转的关系。
结论
文本使用 Micromeritics 的 AccuPyc 系列全自动密度仪测试了锂离子电池正极材料 NCM 的真实密度。测试过程操作简单,快速,可精确地测试及计算电池材料的真实体积和密度。NCM 的体积平均值为 3.3577 g/cm³,标准偏差为 0.0010 g/cm³ ;NCM 的密度平均值为 4.5769 g/cm³,标准偏差为0.0014 g/cm³,测试结果仅在小数点后第三位浮动。所得的真密度结果可用作材料的研发分析以及生产质量控制指标。
1822
- 1煤气成分与热值监测-陕北大型能源化工企业气体浓度与热值监测项目
- 2无卤低烟阻燃材料中炭黑含量检测结果异常情况的分析
- 3GB 36246-2018中小学合成材料面层运动场地全文
- 4ASTM-D638-2003--中文版-塑料拉伸性能测定方法
- 5GBT 15065-2009 电线电缆用黑色聚乙烯塑料
- 6GB_T2951.41-2008电缆和光缆绝缘和护套材料通用试验方法
- 7GBT 13021-2023 聚烯烃管材和管件 炭黑含量的测定 煅烧和热解法
- 8PEG熔融相变温度测试
- EVA型热熔胶书刊装订强度检测与质量控制研究
- 自动热压机的发展趋势是怎样的?
- 用户论文集 ▏化学吸附 ▏铱-铼共沉积乙醇处理后SiO2载体催化剂应用在甘油氢解反应
- 为什么近期单壁碳纳米角(CNH)的研究进展值得关注?
- 为什么介孔SiO2在药物递送领域的应用越来越多?
- FRITSCH飞驰球磨——不锈钢介导的水中球磨条件下定量H2生成实验研究
- 为什么MoS2在催化领域的研究进展值得关注?
- 飞纳台式扫描电镜助力纳米纤维在心血管组织再生中的研究
- 磷酸化修饰鬼臼果多糖的制备及生物活性
- DSR论文解读:Advanced Science News 报道中科院长春应化所新型非铂催化材料研究成果
- High-throughput preparation, scale up and solidification of andrographolide nanosuspension using hummer acoustic resonance technology(纳米混悬剂制备的前瞻性技术 - 蜂鸟声共振)
- 扫描电镜优秀论文赏析|飞纳台式扫描电镜电极材料上的应用
- 扫描电镜论文赏析-干旱影响杨树叶片及次生木质部发育的分子机制
- 压实度与密实度的区别
- 振实密度和压实密度的关系
- 勃姆石专用气流粉碎机分级机打散机