前 言
锂离子电池充放电过程中,电极材料膨胀、SEI生长、热膨胀和产气等现象可能会引发电池膨胀,从而引起体积变化。电池膨胀被认为是评估电池容量和结构衰退的关键指标之一,也是对电池滥用期间发生燃烧和爆炸等严重安全事件的一种预警。方形和软包电池已有成熟的方法来表征其膨胀行为,而圆柱电池由于本身结构的特殊性,尚无成熟、稳定的膨胀表征方法。目前,有一些方法来表征圆柱电池膨胀,例如游标卡尺、三坐标测试仪、压力膜、应变片、影像分析法(CT断层扫描、中子成像、X射线、超声波等)等方法测试,但这些方法存在精度低、无法原位测试等问题,无法准确完整的描述圆柱电池的膨胀行为。
针对上述测试方法的不足,元能科技(厦门)有限公司基于光学的电池成像技术,开发了CCS1300-4圆柱电池原位膨胀测试系统,用于圆柱电池原位膨胀表征。该方法可以原位测试圆柱电池充放电过程中的体积变化,实时重构电池的表面形貌并计算膨胀量,光学检测精度可以达到±1μm。本文使用CCS1300-4圆柱电池原位膨胀测试系统对负极硅含量不同的两款21700圆柱电池进行测试,表征两者在化成和充放电过程中的膨胀行为,分析不同硅含量对电池膨胀行为的影响,指导硅负极应用和圆柱电池设计。
1.实验设备与测试方法
1.1 实验设备
本文使用CCS1300-4圆柱电池原位膨胀测试系统进行21700圆柱电池膨胀表征,该设备包含4通道测试夹具及专用测试软件。搭配充放电仪,可同时对4颗圆柱电池进行原位膨胀测试。
图1.CCS1300-4圆柱电池原位膨胀测试系统
1.2 测试原理
如图2所示,利用基于光学的电池体积成像技术,对电池充放电过程中的表面形貌进行实时三维重构,计算充放电过程中的体积及体积变化量。
图2.光学法测试圆柱电池膨胀原理示意图
1.3 测试方法
将21700圆柱电池外层塑料膜去掉,安装到设备夹具上,打开软件,进行充放电通道、采样角度、警报温度上限、警报体积上限设置。启动程序,电池旋转并进行体积测试,软件自动将充放电数据与体积测试数据同步。
2.圆柱电池膨胀测试
选取负极硅含量不同的两款21700 5Ah圆柱电池,测试两者化成和充放电过程中的体积膨胀。
表1.两款21700圆柱电池信息
如图3所示,负极中硅含量增加,化成过程中体积膨胀显著增加,且微分容量曲线上嵌锂对应的峰值会越高,说明硅含量对圆柱电池体积膨胀影响比较大。化成过程中,硅碳负极是导致电池体积膨胀的主要原因,石墨嵌锂后体积膨胀约10%,硅氧体积膨胀约120%。负极电极的整体体积膨胀是石墨和硅氧两者膨胀体积的和,当然极片的孔隙和粘结剂能够容纳一定的膨胀体积。因此,硅氧含量越高,电池表现出更大的体积膨胀。
图3.S1与S2化成膨胀曲线
对两款电池进行充放电测试,并对电池充放电过程中的表面形貌进行实时三维重构,得到整个充放电过程中电池表面形貌动态变化图。如图4所示,充放电过程中电池体积膨胀显著,且电池本身体积膨胀存在较大不均匀性。对比S1与S2发现,S2膨胀不均匀性高于S1,这种不均匀性差异应该与两颗电池内部裸电芯结构有关系。圆柱电池是由正负极片和隔膜以圆柱形方式卷绕的卷芯、焊接在电极上的极耳、绝缘垫、顶盖和壳体等组装而成的,电极上的极耳会造成卷芯厚度的不均匀性,各个零部件的结构和状态等都会造成电池整体体积变化的不均匀性。此外,极片在膨胀和收缩过程中也会造成极片发生褶皱,引起不可逆的体积膨胀,这些极片褶皱引起的体积膨胀也会造成电池体积膨胀的不均匀性。
图4.S1与S2充放电过程中表面形貌动态变化图
图5.圆柱电池各个部分组成示意图
3.总结
本文利用CCS1300-4圆柱电池原位膨胀测试系统,测试了两款负极不同硅含量的21700圆柱电池化成和充放电过程中的膨胀行为。测试发现,硅氧含量对圆柱电池体积膨胀影响非常显著,且电池本身体积膨胀存在较大不均匀性。通过分析体积膨胀数据和表面形貌动态变化图,可以为硅负极材料的应用和圆柱电池结构设计提供数据支持,助力锂离子电池研发及质量管控。
4.参考文献
1. Wenxuan Jiang, Haoran Li, Sicong Wang, Sa Wang and Wei Wang,Dynamic Volumography of Cylindrical Li-Ion Battery Cells by Watching Its Breath During Cycling,
2. Lubing Wang, Sha Yin, Jun Xu,A detailed computational model for cylindrical lithium-ion batteries under mechanical loading: From cell deformation to short-circuit onset,Journal of Power Sources,2019,413,284-292
1600

- 1硅盐制样分析全自动研磨机AI海璐智能纳米粉碎机低温真超细磨粉机
- 2【样本】真空获得【2025年4月版】
- 3【样本】真空检漏【2024年9月版】
- 4【样本】真空应用【2023 7月版】
- 5场发射宣传单页-050325-0411
- 6钨灯丝折页中文版20250324
- 7畜牧行业杰曼称重料罐解决方案
- 8折叠屏、6G、新能源汽车,MIM/CIM工艺如何借势起飞?

- 汽车一体化发光智能前脸设计难点
- 突破性进展!新型3D多孔碳银复合材料显著提升海水淡化效率
- Nature、Science接连报道石墨烯最新进展!
- 旋风分离除尘粉碎机售后维护与保养
- 为什么近期LDH的电催化应用频登顶刊?
- 纳米材料与类器官:从相互作用到个性化医疗的突破
- AFM、AHM等顶刊报道黑磷的最新研究进展
- 为什么中药碳点的研究进展值得关注?
- 苏州碳丰科技首席科学家程金生老师以本公司名义在国际上发表关于石墨烯纤维的论文《石墨烯纤维纳米复合材料的合成及氨基酸检测的分析应用》:
- 介可视·散装物料库存管理雷达全景扫描系统在料仓、堆场中的应用
- 磷酸化修饰鬼臼果多糖的制备及生物活性
- DSR论文解读:Advanced Science News 报道中科院长春应化所新型非铂催化材料研究成果
- High-throughput preparation, scale up and solidification of andrographolide nanosuspension using hummer acoustic resonance technology(纳米混悬剂制备的前瞻性技术 - 蜂鸟声共振)
- 扫描电镜优秀论文赏析|飞纳台式扫描电镜电极材料上的应用
- 扫描电镜论文赏析-干旱影响杨树叶片及次生木质部发育的分子机制
- 压实度与密实度的区别
