在上篇文章中,我们介绍了原子层沉积(ALD)方法包覆电极材料的必要性以及粉末涂层(PC)和极片涂层(DC)两种不同的改性策略。
ALD 方法对于电极材料的改善有目共睹,但涂层的选择以及设备的选择是关键。极片涂层依赖卷对卷设备和苛刻的低温要求。粉末包覆更适合从源头进行界面的改善。本篇文章我们将介绍粉末原子层沉积(PALD)工艺及其在电极材料包覆中的应用。
01.“粉末原子层沉积(PALD)工艺”
对于粉末样品的 ALD 研究源自上世纪 90 年代,但大规模的研究兴起于本世纪初。由美国科罗拉多大学博尔德分校的 Steven George 以及Alan Weimer 教授发起,并先后孵化了ALD Nanosolutions 以及 Forge Nano两家 ALD 公司(二者在 2020 年完成合并),已经成为全球最大的粉末 ALD 技术推行者,实现从毫克到千吨级的粉末表面保形涂层加工。
目前,Forge Nano 公司可用于大批量粉末原子层沉积包覆的设备有流化床,旋转床以及空间振动床,可以实现公斤级到千吨级的粉末包覆处理。(详见粉末保形包覆——PALD 技术的基本实现方法)
旋转床式 ALD 系统
多级空间 ALD 系统
空间振动床 ALD 系统
02.“粉末原子层沉积(PALD) 改性涂层”
粉末原子层沉积(PALD)方法对电极表面的改性是通过在正极或负极粉末上生长一层薄薄的保护膜来实现的,有时通过掺杂或热处理来控制其性能。
根据电极材料的性质,涂层材料可以是化学钝化的,也可以是导电的。此外,薄膜的厚度、数量和性质决定了其保护和增强性能的能力。目前,PALD 涂层在正极材料中的应用较多(钴酸锂,锰酸锂,镍钴锰酸锂,镍钴铝酸锂,富锂正极,镍锰酸锂等)。
PALD 涂层可分为五类,包括金属氧化物、氟化物、磷酸盐、氮化物和合金涂层。与 UC 和 DC 正极相比,这些涂层提升了正极性能,如提供更好的电子和离子导电性、改变表面化学性质、抑制金属在电解质中的溶解以及保护材料表面。
IC:初始容量 RC:保留容量
IC:初始容量 RC:保留容量
IC:初始容量 RC:保留容量
从文献报道可看出,氧化物包覆尤其是 Al2O3 是研究和应用最多的涂层,下一期我们将介绍氧化铝相关的研究和案例。
03.“粉末原子层沉积(PALD)涂层改善电极材料性能”
富锂层状正极材料以及 LMNO 因其优异的储锂能力而受到广泛关注。然而,它们的应用仍然受到容量退化和电压衰减的限制,这是由重复循环过程中的相变和金属溶解引起的。在这项工作中,在流化床反应器中对富锂层状阴极以及 LMNO 粉末进行氧化铁(FeOx)粉末原子层沉积工艺(PALD)包覆 ,然后进行退火处理。退火后 Fe 离子会形成掺杂,包覆体系表现出比容量、倍率性能和循环稳定性显著提高。
04.“关于 Forge Nano”
Forge Nano 专注于粉末原子层沉积技术(PALD),凭借其专有的 Atomic Armor™ 工艺生产的卓越表面涂层能够释放材料的最佳性能,实现延长寿命、提高安全性、降低成本和优化产品的功能。可开发定制解决方案,满足任何规模的任何需求,包括从小规模实验室级别到工业规模、大批量生产。
欢迎您随时联系我们获取更多产品详情与应用案例:
参考文献
【1】Zhao, J.; Qu, G.; Flake, J. C.; Wang, Y. Low temperature preparation of crystalline ZrO2 coatings for improved elevatedtemperature performances of Li-ion battery cathodes. Chem. Commun. (Camb) 2012, 48 (65), 8108−10.
【2】Zhao, J.; Wang, Y. Ultrathin Surface Coatings for Improved Electrochemical Performance of Lithium Ion Battery Electrodes at Elevated Temperature. J. Phys. Chem. C 2012, 116 (22), 11867−11876.
【3】Riley, L. A.; Cavanagh, A. S.; George, S. M.; Jung, Y. S.; Yan, Y.; Lee, S. H.; Dillon, A. C. Conformal surface coatings to enable high volume expansion Li-ion anode materials. ChemPhysChem 2010, 11 (10), 2124−30.
【4】Gao Y, He X, Ma L, et al. Understanding cation doping achieved by atomic layer deposition for high-performance Li-Ion batteries[J]. Electrochimica Acta, 2020, 340: 135951.
1397
- 1煤气成分与热值监测-山西大型有色金属生产企业煤气巡检项目
- 2煤气成分与热值监测-安徽大型钢铁冶金企业煤气防护站气体巡检项目
- 3煤气成分与热值监测-陕北大型能源化工企业气体浓度与热值监测项目
- 4无卤低烟阻燃材料中炭黑含量检测结果异常情况的分析
- 5GB 36246-2018中小学合成材料面层运动场地全文
- 6ASTM-D638-2003--中文版-塑料拉伸性能测定方法
- 7GBT 15065-2009 电线电缆用黑色聚乙烯塑料
- 8GB_T2951.41-2008电缆和光缆绝缘和护套材料通用试验方法
- 致密化压力对石榴石固态锂电池成型和性能的影响
- EVA型热熔胶书刊装订强度检测与质量控制研究
- 自动热压机的发展趋势是怎样的?
- 用户论文集 ▏化学吸附 ▏铱-铼共沉积乙醇处理后SiO2载体催化剂应用在甘油氢解反应
- 为什么近期单壁碳纳米角(CNH)的研究进展值得关注?
- 为什么介孔SiO2在药物递送领域的应用越来越多?
- FRITSCH飞驰球磨——不锈钢介导的水中球磨条件下定量H2生成实验研究
- 为什么MoS2在催化领域的研究进展值得关注?
- 磷酸化修饰鬼臼果多糖的制备及生物活性
- DSR论文解读:Advanced Science News 报道中科院长春应化所新型非铂催化材料研究成果
- High-throughput preparation, scale up and solidification of andrographolide nanosuspension using hummer acoustic resonance technology(纳米混悬剂制备的前瞻性技术 - 蜂鸟声共振)
- 扫描电镜优秀论文赏析|飞纳台式扫描电镜电极材料上的应用
- 扫描电镜论文赏析-干旱影响杨树叶片及次生木质部发育的分子机制
- 压实度与密实度的区别
- 振实密度和压实密度的关系
- 勃姆石专用气流粉碎机分级机打散机