锂电池作为清洁能源发展的核心,正不断向高能量密度、长寿命和高安全性的方向迈进。在这一过程中,材料的微观结构和性能之间的关联成为研究的关键,而传统检测手段往往难以满足亚微米尺度上的精准解析需求。Nano-CT(纳米计算机断层扫描)技术以其高分辨率、无损成像和三维重建能力,为锂电池研发和质量控制提供了革命性的支持。
一、Nano CT 技术概述
Nano-CT 是一种基于 X 射线的无损成像技术,通过纳米级的空间分辨率实现样品内部结构的三维重建。与传统的 Micro-CT 相比,Nano-CT 能以更高的精度捕捉微观细节,尤其适用于分析锂电池中的关键微观结构,如活性颗粒、电解质界面、孔隙分布等。
分辨率:可达几十纳米,适合解析亚微米级的结构特征。
无损性:无需破坏样品,可用于后续的多方法联合研究。
三维重建:实现全景式观察,弥补传统二维成像的局限性。
最新推出的 Neoscan N90 高分辨纳米CT,是全球首款台式纳米 CT 系统,具有 40nm 超高分辨率,样品尺寸大小为 100mm*400mm,可选配集成的 XRF 系统,进行化学成分分析,钾(K)以上可分辨。这种方法对于理解电池的内部机理、评估电池的质量以及提高电池的安全性具有重要价值。
推荐阅读:首款台式纳米 CT——NEOSCAN N90 震撼登场!
二、Nano CT 在锂电行业中的应用
电池材料内部结构分析
锂电池的性能在很大程度上取决于电极材料的内部结构。Nano CT 技术能够提供电极材料的高分辨率三维图像,使研究人员能够详细观察材料的孔隙率、颗粒大小、形状和分布。这些参数对于理解电池的充放电行为、锂离子的插入/脱出动力学以及电极反应的均匀性至关重要。
颗粒形态与分布:检测正极材料(如LiNiMnCoO₂)颗粒的形态、大小分布及颗粒间的接触状态,为优化材料制备工艺提供依据。
孔隙分布:分析负极石墨的孔隙率及其均匀性,这与电解液的浸润性密切相关,从而影响充放电效率。
颗粒裂纹与破损:通过高分辨三维成像,捕捉循环过程中的颗粒裂纹及分布,为提升循环寿命提供设计思路。
图1使用 Neoscan N90 高分辨纳米CT 以 580nm 体素尺寸扫描锂电池,内部结构得以清晰展示。
图2 使用 Neoscan N70 通用型显微CT 扫描 18650 型电池(长度70毫米),内部结构得以清晰展示。
图3 使用 nano ct 以 480nm 体素尺寸扫描石墨负极,(a) 来自断层扫描序列的单个切片。 (b) 300个独立的断层扫描切片的渲染图(尺寸为43 × 348 × 144微米)。图片来源于文献【1】
电解质与界面研究
固态电池的界面特性直接影响离子传输效率和界面稳定性,Nano CT 可以揭示这一界面的微观结构,包括固体电解质界面(SEI)层的形成和演变。
固态电解质界面观察:检测固态电解质与电极的接触质量,分析界面缺陷(如孔洞、缝隙)的形成机制。
界面演变监测:在多次循环后,通过无损成像对界面变化进行追踪,为优化电池界面稳定性提供依据。
析锂现象研究:精准捕捉锂金属负极表面析锂的分布及形态,为防止枝晶生长提供指导。
电池失效分析
随着使用时间的增加,锂电池会经历老化过程,导致性能下降。Nano CT 可以用于分析老化电池的内部结构变化,如电极材料的裂纹、颗粒的破碎和电极层的剥离。这些信息对于理解电池的失效机制和开发延长电池寿命的策略至关重要。
内部短路检测:在电池失效后,检测内部可能存在的短路位置及其形成机制。
热失控机理研究:通过捕捉电池热失控前后的内部变化,帮助开发更高安全性的电池设计。
循环寿命影响因素:分析长循环后正负极材料的变化,如电极脱落、颗粒破损或体积膨胀。
图4 G1C 软包电池在化成后但循环前的 X 射线计算机断层扫描横截面。放大视图以高分辨率拍摄(体素大小为 8.5μm)。右图表示横截面(电池底部)的高度。图片来源于文献【2】
图5 进行寿命测试(未进行压缩)后,软包电池顶部、中部和底部的 X 射线计算机断层扫描横截面。膨胀在图所示的顶部和中间横截面中清晰可见(参见袋和电极层堆栈之间的暗区)。图片来源于文献【2】
电池制造工艺优化
Nano CT 技术不仅在电池材料的研究中发挥作用,还可以用于电池设计和制造过程的优化。通过对电池组件进行高分辨率成像,研究人员可以评估电池设计的有效性,检测制造过程中的缺陷,并提出改进措施。
涂层均匀性检测:评估正负极材料涂层的厚度及均匀性,确保生产一致性。
集流体与涂层结合状态:分析集流体(如铝箔)与电极材料之间的结合强度与缺陷分布。
缺陷检测:识别制造过程中产生的微小孔洞、裂纹及颗粒分离等隐性缺陷,降低电池失效风险。
三、总结
Nano-CT 技术为锂电池行业提供了独特的微观视角,从材料研发到工艺优化,再到失效分析,其应用覆盖了整个电池生命周期。随着技术的不断进步和与其他手段的协同发展,Nano-CT 将进一步加速锂电池领域的创新步伐,为推动绿色能源革命注入新的动力。
参考文献
【1】Characterization of the 3-dimensional microstructure of a graphite negative electrode from a Li-ion battery, Electrochemistry Communications 12(2010)374-377
【2】Electrical Characterization and Micro X-ray ComputedTomography Analysis of Next-Generation Silicon AlloyLithium-Ion Cells, World Electric Vehic Journal, 2018, 9, 43;
411
- 1无卤低烟阻燃材料中炭黑含量检测结果异常情况的分析
- 2GB 36246-2018中小学合成材料面层运动场地全文
- 3ASTM-D638-2003--中文版-塑料拉伸性能测定方法
- 4GBT 15065-2009 电线电缆用黑色聚乙烯塑料
- 5GB_T2951.41-2008电缆和光缆绝缘和护套材料通用试验方法
- 6GBT 13021-2023 聚烯烃管材和管件 炭黑含量的测定 煅烧和热解法
- 7PEG熔融相变温度测试
- 8聚碳酸酯(PC) DSC测试玻璃化转变温度
- EVA型热熔胶书刊装订强度检测与质量控制研究
- 自动热压机的发展趋势是怎样的?
- 用户论文集 ▏化学吸附 ▏铱-铼共沉积乙醇处理后SiO2载体催化剂应用在甘油氢解反应
- 为什么近期单壁碳纳米角(CNH)的研究进展值得关注?
- 为什么介孔SiO2在药物递送领域的应用越来越多?
- FRITSCH飞驰球磨——不锈钢介导的水中球磨条件下定量H2生成实验研究
- 为什么MoS2在催化领域的研究进展值得关注?
- 飞纳台式扫描电镜助力纳米纤维在心血管组织再生中的研究
- 磷酸化修饰鬼臼果多糖的制备及生物活性
- DSR论文解读:Advanced Science News 报道中科院长春应化所新型非铂催化材料研究成果
- High-throughput preparation, scale up and solidification of andrographolide nanosuspension using hummer acoustic resonance technology(纳米混悬剂制备的前瞻性技术 - 蜂鸟声共振)
- 扫描电镜优秀论文赏析|飞纳台式扫描电镜电极材料上的应用
- 扫描电镜论文赏析-干旱影响杨树叶片及次生木质部发育的分子机制
- 压实度与密实度的区别
- 振实密度和压实密度的关系
- 勃姆石专用气流粉碎机分级机打散机