中药固体制剂干法制粒机LG-100
干法制粒是将物料经压轮挤压成薄片,通过破碎、整粒制成颗粒,是中药固体制剂常用的制粒方法。目前,中药干法制粒问题是易粘轮。
根据江西中医药大学和中药固体制剂制造技术的罗晓健等研究表明:出现粘轮的问题主要与物料的玻璃化转变有关。一是中药浸膏粉的玻璃化转变温度低,干法制粒时干压过程会将机械能转化为热能使压轮表面温度升高;二是干压制成片胚时的高压能够促进大分子链段运动,显著地降低浸膏粉的玻璃化转变温度。两者都会使物料由玻璃态向橡胶态快速转变而导致粘轮。
在现有设备条件下,解决上述问题主要由两种方法:一是通过添加玻璃化转变温度高的辅料、减少产品的中药浸膏粉载药量,但采用此种方法会降低单位产品的药效,严重影响产品竞争力;二是通常通过减小挤压压力来控制粘轮率,但目前主流的干法制粒机均依靠一对加压压轮将物料挤压成薄片,这一过程中因压轮之间的压力减小,而物料受压成片胚的时间较短,部分物流来不及挤压成片胚,仍然是粉末状态,需要增加制粒次数,反复进行挤压,导致单次制药的颗粒所得率低,降低了制粒效率,影响生产效率和效益。
针对现有技术的不足,本发明的目的在于提供一种干法制粒机,旨在解决现有技术中为避免粘轮,通过添加辅料、减少载粉量的方式控制粘轮,药效较低;而通过降低压轮的压力控制粘轮,受压时间过短,压力不足,进而导致单次制粒所得率低,影响生产效率及效益的技术问题。
干法制粒机,包括喂料装置、主体及整粒装置,所述主体的一端连通所述喂料装置,所述主体的另一端连通所述整粒装置,所述主体内设置加压装置,所述加压装置包括加压机构及支撑机构,所述加压机构与所述支撑机构相对设置,且所述加压机构与所述支撑机构之间形成压力通道,所述喂料装置用于将物料送入所述压力通道内,所述整粒装置位于所述压力通道远离所述喂料装置的一端,以使挤压后的物料落入所述整粒装置内。
所述主体内设置所述加压机构及所述支撑机构,使所述加压机构与所述支撑机构之间形成压力通道,在所述喂料装置将物料送入所述主体内后,所述物料在所述压力通道内受到持续的低压挤压,相较于传统的单个加压轮与支撑轮之间的点接触挤压,通过设置所述压力通道,可将点接触挤压扩大为面接触挤压,延长受压的时间,在施加低压避免粘轮的同时,可无需添加过多辅料,保证药效,提升单次制粒的所得率,避免多次送料进行反复挤压,提高了生产效率及效益。
1046

- 1川源科技粉末压实密度测试仪技术及应用分析
- 2川源科技-膨胀力测试方案
- 3纳米石墨烯粉介绍
- 4KYKY钨灯丝扫描电镜-Version 2025.A.01
- 5KYKY场发射扫描电镜-Version 2025.A.01
- 6硅盐制样分析全自动研磨机AI海璐智能纳米粉碎机低温真超细磨粉机
- 7【样本】真空获得【2025年4月版】
- 8【样本】真空检漏【2024年9月版】

- 利用蜂鸟声共振技术对穿心莲内酯纳米混悬剂的开发、表征和分子动力学模拟
- 为什么核壳复合纳米材料的研究进展值得关注?
- TiZrHfNbMo 难熔高熵合金等离子体氢化及力学性能
- 《MSEA》重磅:增材制造7075铝合金,世界级难题有了新解法
- 为什么氮掺杂石墨烯的最新进展值得关注?
- 汽车一体化发光智能前脸设计难点
- 突破性进展!新型3D多孔碳银复合材料显著提升海水淡化效率
- Nature、Science接连报道石墨烯最新进展!
- Development, Characterization, and Molecular Dynamics Simulation of Andrographolide Nanosuspensions Utilizing Hummer Acoustic Resonance Technology
- 苏州碳丰科技首席科学家程金生老师以本公司名义在国际上发表关于石墨烯纤维的论文《石墨烯纤维纳米复合材料的合成及氨基酸检测的分析应用》:
- 介可视·散装物料库存管理雷达全景扫描系统在料仓、堆场中的应用
- 磷酸化修饰鬼臼果多糖的制备及生物活性
- DSR论文解读:Advanced Science News 报道中科院长春应化所新型非铂催化材料研究成果
- High-throughput preparation, scale up and solidification of andrographolide nanosuspension using hummer acoustic resonance technology(纳米混悬剂制备的前瞻性技术 - 蜂鸟声共振)
- 扫描电镜优秀论文赏析|飞纳台式扫描电镜电极材料上的应用
- 扫描电镜论文赏析-干旱影响杨树叶片及次生木质部发育的分子机制
