微粉化对药物的粒度和溶出度的影响
口服是最常用的给药途径。口服后药物颗粒通过胃肠道黏膜吸收,但在胃肠黏膜吸收前,药物颗粒需要先溶解到胃肠道的消化液中,因此药物需要有一定的溶解度和溶解速度(称为溶出度)才能有较好的药效。据统计,有大约40%的药物因溶出度不理想而未能发挥应有的药效[1],因此提高药物的溶解度和溶出速度是非常必要的。
微粉化技术是解决药物溶出度的有效手段之一。它主要是靠减小药物颗粒粒径,增加颗粒的比表面积,从而增加药物的溶出度。何婧等通过将微粉化有效地提高了盐酸小檗碱的溶出度[2]。徐成等通过微粉化分散片极大地改善了罗红霉素的溶出度[3]。文君等采用气流粉碎法提高格列美脲片的溶出度[4],,等等。与微粉化前相比,微粉化后的药物颗粒粒度明显减小,使其溶出度升高,有效成分更充分地进入到血液中,提高药效。同时混悬剂和固体制剂中各种成分的混合均匀性也与粒度息息相关,微粉化后的药品有利于各成分混合均匀。
JP-20型气流粉碎机(1)
上图是阿利维A酸原料药在经过不同微粉化处理后的粒度分布。原始粉末(红色曲线)粒度最粗且呈双峰状态,还包含较多的100μm以上大颗粒;球磨粉碎(绿色曲线)的粒度明显变细,但仍有大颗粒,且粒度分布依然较宽,未达到微粉化要求,也不利于混合均匀;气流粉碎(蓝色曲线)的粒度最细且分布较窄,分布也很集中,从而保证单剂药品含量均匀,药效一致,提高溶出度和药效。
JP-20型气流粉碎机(2)
在具体药物和研究过程中,建立药物颗粒粒度与溶出度的关系,对药物的粒度和粒度分布进行研究并制定适宜的质量标准意义重大。在制药行业粒度检测时,主要依据的标准是美国药典USP429和中国药典0982。两者明确规定用激光衍射法测试原辅料粒度,但对具体药品而言,选择哪种激光粒度仪、选择干法测试还是湿法测试、选择什么分散介质、选择合理的分散方法等具体操作层面上的问题,却没有(也不可能)给出明确的说明。
参考文献:
[1].S.M. Wong,I.W. Kellaway,S. Murdan,Enhancement of the dissolution rate and oral absorption of a poorly water soluble drug by formation of surfactant-containing microparticles[J].Internation Journal of Pharmaceutics 317(2006)61-68.
[2]何婧,张喻娟,田力等,微粉化对盐酸小檗碱粉体学性质与溶出度的影响[J].中国实验方剂学杂志,2015,21(18):5-8.
[3]徐成,金春,秦勇等,罗红霉素微粉化分散片的制备与溶出度测定[J].医药导报,2010,29(8):1062-1064.
[4]文君,肖亚宝,黄桂花.微粉化技术提高格列美脲片溶出度[J].北方药学,2013,10(8):64.
[5]杨玉金,唐舒棠,王绍辉.阿利维A酸原料药的微粉化工艺研究[J].中国药房,2018,29(7):914-917.
1264

- 1川源科技粉末压实密度测试仪技术及应用分析
- 2川源科技-膨胀力测试方案
- 3纳米石墨烯粉介绍
- 4KYKY钨灯丝扫描电镜-Version 2025.A.01
- 5KYKY场发射扫描电镜-Version 2025.A.01
- 6硅盐制样分析全自动研磨机AI海璐智能纳米粉碎机低温真超细磨粉机
- 7【样本】真空获得【2025年4月版】
- 8【样本】真空检漏【2024年9月版】

- 利用蜂鸟声共振技术对穿心莲内酯纳米混悬剂的开发、表征和分子动力学模拟
- 为什么核壳复合纳米材料的研究进展值得关注?
- TiZrHfNbMo 难熔高熵合金等离子体氢化及力学性能
- 《MSEA》重磅:增材制造7075铝合金,世界级难题有了新解法
- 为什么氮掺杂石墨烯的最新进展值得关注?
- 汽车一体化发光智能前脸设计难点
- 突破性进展!新型3D多孔碳银复合材料显著提升海水淡化效率
- Nature、Science接连报道石墨烯最新进展!
- Development, Characterization, and Molecular Dynamics Simulation of Andrographolide Nanosuspensions Utilizing Hummer Acoustic Resonance Technology
- 苏州碳丰科技首席科学家程金生老师以本公司名义在国际上发表关于石墨烯纤维的论文《石墨烯纤维纳米复合材料的合成及氨基酸检测的分析应用》:
- 介可视·散装物料库存管理雷达全景扫描系统在料仓、堆场中的应用
- 磷酸化修饰鬼臼果多糖的制备及生物活性
- DSR论文解读:Advanced Science News 报道中科院长春应化所新型非铂催化材料研究成果
- High-throughput preparation, scale up and solidification of andrographolide nanosuspension using hummer acoustic resonance technology(纳米混悬剂制备的前瞻性技术 - 蜂鸟声共振)
- 扫描电镜优秀论文赏析|飞纳台式扫描电镜电极材料上的应用
- 扫描电镜论文赏析-干旱影响杨树叶片及次生木质部发育的分子机制
