摘要:涂料作为一种重要的材料,其热性能对其使用性能具有重要影响,尤其是玻璃化转变温度(Tg),它是衡量涂料热稳定性的重要参数之一。本文通过差示扫描量热法(DSC)测试涂料样品的Tg,并对测试结果进行解析,以期为涂料的研发和应用提供理论参考。
一、引言
玻璃化转变温度(Tg)是聚合物从玻璃态转变为橡胶态的温度,是涂料材料的一个关键热力学参数。涂料的Tg决定了其在不同温度下的力学性能和使用场合。通过测定涂料的Tg,可以了解其耐热性、柔韧性等性质,对涂料的配方优化及应用具有重要意义。差示扫描量热法(DSC)作为一种常用的热分析方法,能够精确测定材料的Tg等热物性参数。
二、实验部分
三、 测试条件
1. 平衡温度 15.00℃
2. 10.00℃/min 速率升温至 110.00℃
3. 恒温 1.00min
4. 10.00℃/min 速率降温至 15.00℃
5. 平衡温度 15.00℃
6. 恒温 3.00min
7. 10.00℃/min 速率升温至 250.00℃ (Tg1)
8. 10.00℃/min 速率降温至 15.00℃
9. 平衡温度 15.00℃
10. 恒温 3.00min
11. 10.00℃/min 速率升温至 150.00℃ (Tg2)
四、结果与讨论
根据DSC测试得到的涂料热性能曲线(见图),我们可以清晰地观察到涂料的玻璃化转变过程。在图中,Tg的起点、终点及峰值均清晰可见。具体分析如下:
1. 固化行为分析
在 117.7℃ 附近的DSC吸热峰对应涂料的 固化反应。此温度下,涂料中化学组分发生交联形成高分子网络结构,产生一个明显的固化峰,峰值温度为 117.7℃,固化焓为 43.2173 J/g。固化过程使得涂料硬化成膜,赋予其较高的强度和化学稳定性。固化反应的峰值温度和焓值可以用来优化涂料的配方,从而提高固化效率和最终涂层的性能。
2. 固化后的玻璃化转变温度(Tg2)
在固化反应完成后,涂料样品的玻璃化转变温度(Tg)发生了变化。在第二次升温过程中,测得固化后的玻璃化转变温度(Tg2)约为 150.00℃。Tg2的升高表明,经过固化后涂料的交联密度提高,分子链的运动受到更多限制,导致玻璃化转变温度上升。Tg2是评估固化后涂料热性能的重要指标,表明该涂料在较高温度下依然能保持良好的力学性能和热稳定性。
五、结论
通过DSC测试和分析,本文得出了某涂料的玻璃化转变温度(Tg)为 49.68℃,并确定了涂料在高于 54.54℃ 时发生的相变过程及其热稳定性分析。这些结果为涂料的配方设计和实际应用提供了重要的参考信息。在实际使用中,了解Tg及热稳定性对于选择适合的涂料工作温度范围至关重要。
六、参考文献
1. ASTM E1356-08(2014)通过差示扫描量热法确定玻璃化转变温度的标准测试方法。
2. GBT_27816-2011_色漆和清漆用漆基_玻璃化转变温度的测定。
3. GB/T 19466.2塑料 差示扫描量热法(DSC) 第2部分:玻璃化转变温度的测定
447
- 1煤气成分与热值监测-山西大型有色金属生产企业煤气巡检项目
- 2煤气成分与热值监测-安徽大型钢铁冶金企业煤气防护站气体巡检项目
- 3煤气成分与热值监测-陕北大型能源化工企业气体浓度与热值监测项目
- 4无卤低烟阻燃材料中炭黑含量检测结果异常情况的分析
- 5GB 36246-2018中小学合成材料面层运动场地全文
- 6ASTM-D638-2003--中文版-塑料拉伸性能测定方法
- 7GBT 15065-2009 电线电缆用黑色聚乙烯塑料
- 8GB_T2951.41-2008电缆和光缆绝缘和护套材料通用试验方法
- 致密化压力对石榴石固态锂电池成型和性能的影响
- EVA型热熔胶书刊装订强度检测与质量控制研究
- 自动热压机的发展趋势是怎样的?
- 用户论文集 ▏化学吸附 ▏铱-铼共沉积乙醇处理后SiO2载体催化剂应用在甘油氢解反应
- 为什么近期单壁碳纳米角(CNH)的研究进展值得关注?
- 为什么介孔SiO2在药物递送领域的应用越来越多?
- FRITSCH飞驰球磨——不锈钢介导的水中球磨条件下定量H2生成实验研究
- 为什么MoS2在催化领域的研究进展值得关注?
- 磷酸化修饰鬼臼果多糖的制备及生物活性
- DSR论文解读:Advanced Science News 报道中科院长春应化所新型非铂催化材料研究成果
- High-throughput preparation, scale up and solidification of andrographolide nanosuspension using hummer acoustic resonance technology(纳米混悬剂制备的前瞻性技术 - 蜂鸟声共振)
- 扫描电镜优秀论文赏析|飞纳台式扫描电镜电极材料上的应用
- 扫描电镜论文赏析-干旱影响杨树叶片及次生木质部发育的分子机制
- 压实度与密实度的区别
- 振实密度和压实密度的关系
- 勃姆石专用气流粉碎机分级机打散机